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The numerical methods are based on replacing the differential

equations by algebraic equations (finite difference equations).

For finite difference method, this is done by replacing the derivatives by differences.

A finite difference method (FDM) is is one of the available numerical methods for solving

differential equations by approximating derivatives with finite differences. Both the spatial

domain and time interval (if applicable) are discretized, or broken into a finite number of steps.

What is a Finite Difference Equation?

.
In general real life EM problems cannot be solved by using the analytical methods, because:

1. The PDE is not linear,

2. The solution region is complex,

3. The boundary conditions are of mixed types,

4. The boundary conditions are time dependent,

A function f that depends on x.

The first derivative of f(x) at a point is equivalent to the slope of a line tangent to the curve at

that point.

If we don’t take the indicated limit, we will have the following approximate relation for the derivative:

𝑑𝑓(𝑥)

𝑑𝑥
= lim

∆𝑥→0

∆𝑓

∆𝑥
=  lim

∆𝑥→0

𝑓 𝑥+∆𝑥) −𝑓(𝑥)

∆𝑥

𝑑𝑓(𝑥)

𝑑𝑥
≅
𝑓 𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
The differential 

𝑑(𝑓)

𝑑𝑥
≈

∆𝑓

ℎ
the difference 

https://deepai.org/machine-learning-glossary-and-terms/partial-differential-equation
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Finite_difference_approximation
https://en.wikipedia.org/wiki/Discretization
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Steps of finite difference solution:

 Divide the solution region into a grid of nodes,

 Approximate the given differential equation by finite difference equivalent,

 Solve the differential equations subject to the boundary conditions and/or initial conditions.

x i+1 = xi + Δx, and x i-1 = x – Δx, 

fi+1 at x = xi+1 fi at x = xi
fi-1 at x = xi-1

Finite Difference Approximation Of The Derivative

The derivative 𝑓′(𝑥) of a function 𝑓(𝑥)
at the point 𝑥 = xi is defined by:

𝑑(𝑓)

𝑑𝑥 𝑥=𝑥𝑖
=  lim

∆𝑥→0

𝑓 𝑥𝑖+∆𝑥) −𝑓(𝑥𝑖)

∆𝑥

=  lim
∆𝑥→0

𝑓 𝑥𝑖+∆𝑥) −𝑓(𝑥𝑖)

∆𝑥
= lim

∆𝑥→0

∆𝑓

∆𝑥
=

∆𝑓

∆𝑥 The differential 
𝑑(𝑓)

𝑑𝑥
≈

∆𝑓

ℎ
the difference 

where h = Δx

The rate of the change of the function with respect to the variable x is accounted between the

=
∆𝑓

ℎ

It is important to be aware of the fact that smaller the steps Δx the closer the values between the

differential and difference of the rate change of the function

f(xi)

f(xi-1)

f(xi+1)

f\’(xi)

x
xi+1

Dx

f(x)

xi-1

f(xi-1)

f(x)

f(xi)

f(xi+1

)

xi

Dx

Tangent of 

f(x) at xi

current value at: 𝑥 = 𝑥𝑖
and the step forward at 𝑥 𝑖 + 1 = 𝑥𝑖+ Δ𝑥
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1. Forward difference is the rate of change of the function

values between the “current” step at 𝑥𝑖, and the function

value at a step “forward” at 𝑥𝑖+1and equal to the slope of

the line that connects points: 𝑥𝑖 , 𝑓 𝑥𝑖 and

(𝑥𝑖+1, 𝑓 𝑥𝑖+1 ):

2. Backward difference is the rate of change of the function

values between the “current” step at 𝑥𝑖, and the function value

at a step “back” at 𝑥𝑖−1, which is the slope of the line that

connects points: ((𝑥𝑖 , 𝑓(𝑥𝑖))and (𝑥𝑖−1, 𝑓(𝑥𝑖−1):

Three Basic Finite Difference Methods

In finite difference approximations of the slope, we can use values of the function in the

neighborhood of the point to achieve the goal. There are 3 ways to express differentials of a function:

ቚ
𝑑(𝑓)

𝑑𝑥 𝑥=𝑥𝑖
= 

𝑓 𝑥𝑖+1 −𝑓(𝑥𝑖)

𝑥𝑖+1 −𝑥𝑖

ቚ
𝑑(𝑓)

𝑑𝑥 𝑥=𝑥𝑖
= 

𝑓 𝑥𝑖 −𝑓(𝑥𝑖−1)

𝑥𝑖 −𝑥𝑖−1

= 
𝑓 𝑥𝑖 −𝑓(𝑥𝑖−1)

ℎ

=
𝑓 𝑥𝑖+1 − 𝑓(𝑥𝑖)

ℎ

ቤ
𝑑(𝑓)

𝑑𝑥
𝑥=𝑥𝑖+1

=
𝑓 𝑥𝑖+2 − 𝑓(𝑥𝑖+1)

ℎ

ቤ
𝑑(𝑓)

𝑑𝑥
𝑥=𝑥𝑖+2

=
𝑓 𝑥𝑖+3 − 𝑓(𝑥𝑖+2)

ℎ

𝒙𝒙𝒊
𝒙𝒊−𝟏 𝒙𝒊+𝟏

𝒉

Forward difference 

𝒇(𝒙)

𝒙𝒙𝒊
𝒙𝒊−𝟏 𝒙𝒊+𝟏

𝒉

Backward difference 
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3. Central difference is the rate of change of function f(x) is accounted for between the step at

back at (x-Δx) and the step ahead of x, i.e. (x+Δx), which is the slope of the line that connects

points:(𝑥𝑖−1, 𝑓(𝑥𝑖−1)and (𝑥𝑖+1, 𝑓(𝑥𝑖+1):

ቚ
𝑑(𝑓)

𝑑𝑥 𝑥=𝑥𝑖
= 

𝑓 𝑥𝑖+1 −𝑓(𝑥𝑖−1)

𝑥𝑖+1 −𝑥𝑖−1 =
𝑓 𝑥𝑖+1 − 𝑓(𝑥𝑖−1)

2ℎ

The step size in above is “2h” which is “big” in 

compromising the accuracy.

A more accurate “central difference scheme” is to

reduce the step size in each forward and backward

direction by half as show

We will have the corresponding expressions:

ቚ
𝑑(𝑓)

𝑑𝑥 𝑥=𝑥𝑖
= 

𝑓 𝑥
𝑖+
1
2
− 𝑓(𝑥

𝑖−
1
2
)

ℎ

𝒇(𝒙)

𝒉

Central difference 
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The second order derivative of the function at 𝑥𝑖 can be derived by the following procedure

2. The backward difference scheme

and the send order derivatives in the form:

ቚ
𝜕2𝑓

𝜕𝑥2 𝑥=𝑥𝑖
=

𝑑

𝑑𝑥
ቚ

𝑑(𝑓)

𝑑𝑥 𝑥=𝑥𝑖
= lim

∆𝑥→0

ȁ𝛻 𝑓 𝑥𝑖+1
− ȁ𝛻 𝑓 𝑥𝑖

Δ𝑥
≈

ȁ𝛻 𝑓 𝑥𝑖+1
− ȁ𝛻 𝑓 𝑥𝑖

Δ𝑥
= 

ȁ𝛻 𝑓 𝑥𝑖+1
− ȁ𝛻 𝑓 𝑥𝑖

ℎ

𝑓 𝑥𝑖+2 −𝑓(𝑥𝑖+1)

ℎ
−

𝑓 𝑥𝑖+1 −𝑓(𝑥𝑖)

ℎ

ℎ
= 

𝑓 𝑥𝑖+2 −2𝑓 𝑥𝑖+1 +𝑓(𝑥𝑖)

ℎ2

1. The forward difference scheme

𝑑

𝑑𝑥
ቚ

𝑑(𝑓)

𝑑𝑥 𝑥=𝑥𝑖
= lim

∆𝑥→0

ฬȁ𝛻 𝑓 𝑥𝑖
− 𝛻 𝑓

𝑥𝑖−1

Δ𝑥
≈

ฬȁ𝛻 𝑓 𝑥𝑖
− 𝛻 𝑓

𝑥𝑖−1

Δ𝑥
=

ฬȁ𝛻 𝑓 𝑥𝑖
− 𝛻 𝑓

𝑥𝑖−1

ℎ

ቚ
𝜕2𝑓

𝜕𝑥2 𝑥=𝑥𝑖
=

𝑑

𝑑𝑥
ቚ

𝑑(𝑓)

𝑑𝑥
𝑥=𝑥𝑖

=

𝑓 𝑥𝑖 −𝑓(𝑥𝑖−1)

ℎ
−

𝑓 𝑥𝑖−1 −𝑓(𝑥𝑖−2)

ℎ

ℎ
= 

𝑓 𝑥𝑖 −2𝑓 𝑥𝑖−1 +𝑓(𝑥𝑖−2)

ℎ2

3. The central  difference scheme

𝑑

𝑑𝑥
ቚ

𝑑(𝑓)

𝑑𝑥 𝑥=𝑥𝑖
= lim

∆𝑥→0

ቤ
ȁ𝛻 𝑓 𝑥
𝑖+
1
2

− 𝛻 𝑓

𝑥
𝑖−

1
2

Δ𝑥
≈

ቤ
ȁ𝛻 𝑓 𝑥
𝑖+

1
2

− 𝛻 𝑓

𝑥
𝑖−

1
2

Δ𝑥
=  

ฬ
ȁ𝛻 𝑓
𝑥𝑖+

1
2
− 𝛻 𝑓

𝑥
𝑖−
1
2

ℎ

ቚ
𝜕2𝑓

𝜕𝑥2 𝑥=𝑥𝑖
=

𝑑

𝑑𝑥
ቚ

𝑑(𝑓)

𝑑𝑥
𝑥=𝑥𝑖

=

𝑓 𝑥𝑖+1 −𝑓(𝑥𝑖)

ℎ
−

𝑓 𝑥𝑖 −𝑓(𝑥𝑖−1)

ℎ

ℎ
= 

𝑓 𝑥𝑖+1 −2𝑓 𝑥𝑖 +𝑓(𝑥𝑖−1)

ℎ2

The second order derivative
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Consider the function 𝑓 𝑥 = 𝑥3.Calculate its first derivative at point x = 3 numerically with

the forward, backward, and central finite difference formulas and using:

(a) Points x = 2, x = 3, and x = 4. (b) Points x = 2.75, x = 3, and x = 3.25.

Compare the results with the exact (analytical) derivative.
SOLUTION 

Analytical differentiation: The derivative of the function is 𝑓′(𝑥) = 3 𝑥2, and the value of 

the derivative at x = 3 is𝑓′(3) = 3 (32 ) = 27 . 

The points used for numerical differentiation are: 

𝑥 2 3 4

𝑓 𝑥 8 27 64

Using the derivatives the forward, backward, and central finite difference formulas are:

ቚ
𝑑(𝑓)

𝑑𝑥 𝑥=𝑥𝑖
= 

𝑓 𝑥𝑖 −𝑓(𝑥𝑖−1)

ℎ

ቚ
𝑑(𝑓)

𝑑𝑥 𝑥=3
=

𝑓 4 −𝑓(3)

4−3
= 

64 −27

1
= 37

ቚ
𝑑(𝑓)

𝑑𝑥 𝑥=3
=

𝑓 4 −𝑓(2)

4−2
= 

64 −8

2
= 28

𝑒𝑟𝑟𝑜𝑟 =
37 − 27

27
× 100 = 37.04%

ቚ
𝑑(𝑓)

𝑑𝑥 𝑥=3
= 

𝑓 3 −𝑓(2)

3−2
= 

27 −8

1
= 19

ቤ
𝑑(𝑓)

𝑑𝑥
𝑥=𝑥𝑖

=
𝑓 𝑥𝑖+1 − 𝑓(𝑥𝑖−1)

2ℎ

ቤ
𝑑(𝑓)

𝑑𝑥
𝑥=𝑥𝑖

=
𝑓 𝑥𝑖+1 − 𝑓(𝑥𝑖)

ℎ

𝑒𝑟𝑟𝑜𝑟 =
19 − 27

27
× 100 = 29.63%

𝑒𝑟𝑟𝑜𝑟 =
28 − 27

27
× 100 = 3.704%

Forward finite difference

Backward finite difference

Central finite difference 

Example : Comparing numerical and analytical differentiation. 
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(b)The points used for numerical differentiation are: 

𝑥 2.75 3 3.25

𝑓 𝑥 2.75 3 27 3.25 3

Using the derivatives the forward, backward, and central finite difference formulas are:

ቚ
𝑑(𝑓)

𝑑𝑥 𝑥=𝑥𝑖
= 

𝑓 𝑥𝑖 −𝑓(𝑥𝑖−1)

ℎ

ቚ
𝑑(𝑓)

𝑑𝑥 𝑥=3
=

𝑓 3.25 −𝑓(3)

3.25−3
= 

3.253−27

0.25
= 29.3125

𝑒𝑟𝑟𝑜𝑟 =
29.3125 − 27

27
× 100 = 8.565%

ቚ
𝑑(𝑓)

𝑑𝑥 𝑥=3
= 

𝑓 3 −𝑓(2.75)

3−2.75
= 

27 −2.753

0.25
= 24.8125

ቤ
𝑑(𝑓)

𝑑𝑥
𝑥=𝑥𝑖

=
𝑓 𝑥𝑖+1 − 𝑓(𝑥𝑖)

ℎ

𝑒𝑟𝑟𝑜𝑟 =
24.8125 − 27

27
× 100 = 8.102 %

Forward finite difference

Backward finite difference

Central finite difference 

ቚ
𝑑(𝑓)

𝑑𝑥 𝑥=3
=

𝑓 3.25 −𝑓(2.75)

3.25 −2.75
= 

3.253−2.753

0.5
= 27.0625

ቤ
𝑑(𝑓)

𝑑𝑥
𝑥=𝑥𝑖

=
𝑓 𝑥𝑖+1 − 𝑓(𝑥𝑖−1)

2ℎ

𝑒𝑟𝑟𝑜𝑟 =
27.0625 − 27

27
× 100 = 0.2315%
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1. Forward difference is the rate of change of the function

values between the “current” step at (𝑥𝑖 , 𝑦𝑗), and the function

value at a step “forward” at 𝑥𝑖+1, 𝑦𝑗 ):

2. Backward difference is the rate of change of the function

values between the “current” step at 𝑥𝑖 , 𝑦𝑗𝑖, and the function

value at a step “back” at 𝑥𝑖−1, 𝑦𝑗, ∶

Finite Difference Schemes of partial derivatives 

ቚ
𝜕𝑓

𝜕𝑥 𝑥=𝑥𝑖
𝑦=𝑦𝑗

= 
𝑓 𝑥𝑖+1,𝑦𝑗 −𝑓(𝑥𝑖,𝑦𝑗)

𝑥𝑖+1 −𝑥𝑖

=
𝑓 𝑥𝑖 , 𝑦𝑗+1 − 𝑓(𝑥𝑖 , 𝑦𝑗)

ℎ𝑦

ቚ
𝜕𝑓

𝜕𝑥 𝑥=𝑥𝑖
𝑦=𝑗

= 
𝑓 𝑥𝑖,𝑦𝑗 −𝑓(𝑥𝑖−1,𝑦𝑗)

𝑥𝑖 −𝑥𝑗−1

=
𝑓 𝑥𝑖 , 𝑦𝑗 − 𝑓(𝑥𝑖 , 𝑦𝑗−1)

ℎ𝑦
ቚ

𝜕𝑓

𝜕𝑦 𝑥=𝑥𝑖
𝑦=𝑦𝑗

= 
𝑓 𝑥𝑖,𝑦𝑗 −𝑓(𝑥𝑖,𝑦𝑗−1)

𝑦 −𝑦𝑗−1

=
𝑓 𝑥𝑖 , 𝑦𝑗 − 𝑓(𝑥𝑖−1, 𝑦𝑗)

ℎ𝑥

ቚ
𝜕𝑓

𝜕𝑦 𝑥=𝑥𝑖
𝑦=𝑦𝑗

= 
𝑓 𝑥𝑖,𝑦𝑗+1 −𝑓(𝑥𝑖,𝑦𝑗)

𝑦𝑗+1 −𝑦𝑗

=
𝑓 𝑥𝑖+1, 𝑦𝑗 − 𝑓(𝑥𝑖 , 𝑦𝑗)

ℎ𝑥

For a function f(x,y) with two independent variables, the partial derivatives with respect to x and

y at the point (𝑥𝑖 , 𝑦𝑖) can be approximated into three basic scheme :
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3. Central difference is the rate of change of function f(x) is accounted for between the step at

ቚ
𝜕𝑓

𝜕𝑥 𝑥=𝑥𝑖
𝑦=𝑦𝑗

=
𝑓 𝑥𝑖+1,𝑦𝑗 −𝑓(𝑥𝑖−1,𝑦𝑗)

𝑥𝑖+1 −𝑥𝑖−1 =
𝑓 𝑥𝑖+1,𝑦𝑗 − 𝑓(𝑥𝑖−1,𝑦𝑗)

2ℎ𝑥

The step size in above is “2h” which is “big” in 

compromising the accuracy.

A more accurate “central difference

scheme” is to reduce the step size in

each forward and backward direction by

half as show

We will have the corresponding expressions:

ቚ
𝜕𝑓

𝜕𝑥 𝑥=𝑥𝑖
𝑦=𝑦𝑗

= 

𝑓 𝑥
𝑖+

1
2
,𝑦𝑗 −𝑓(𝑥

𝑖−
1
2
,𝑦𝑗)

ℎ𝑥

=
𝑓 𝑥𝑖 , 𝑦𝑗+1 − 𝑓(𝑥𝑖 , 𝑦𝑗−1)

2ℎ𝑦

ቚ
𝜕𝑓

𝜕𝑦 𝑥=𝑥𝑖
𝑦=𝑦𝑗

= 
𝑓 𝑥𝑖,𝑦𝑗+1 −𝑓(𝑥𝑖,𝑦𝑗−1)

𝑦𝑗+1 − 𝑦𝑗−1

𝑖,𝑗+1

𝑖+1,𝑗

𝑖,𝑗

𝑖−1,𝑗

∆ 𝑥

𝑖,𝑗−1

𝑥 𝑚

∆ 𝑦

𝑥 1
𝑥 2 𝑥 𝑖

𝑦 1

𝑦 2

𝑦 𝑖

𝑦 𝑛

ቚ
𝜕𝑓

𝜕𝑦 𝑥=𝑥𝑖
𝑦=𝑦𝑗

= 

𝑓 𝑥𝑖 ,𝑦𝑗+12
−𝑓(𝑥𝑖 ,𝑦𝑗−12

)

ℎ𝑦

back at (𝑥𝑖−1, 𝑦𝑗) and the step ahead of 𝑥𝑖+1, 𝑦𝑗 𝑓𝑜𝑟 ቚ
𝜕𝑓

𝜕𝑥 𝑥=𝑥𝑖
𝑦=𝑦𝑗

And is accounted for between the step atback at

(𝑥𝑖 , 𝑦𝑗−1) and the step ahead of 𝑥𝑖 , 𝑦𝑗+1 𝑓𝑜𝑟 ቚ
𝜕𝑓

𝜕𝑦 𝑥=𝑥𝑖
𝑦=𝑦𝑗
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The second order derivative of the function 

at x and y can be derived by the following 

procedure

The second order derivative

ቚ
𝜕2𝑓

𝜕𝑥2 𝑥=𝑥𝑖
𝑦=𝑦𝑗

=
𝑓 𝑥𝑖+1,𝑦𝑗 −2𝑓 𝑥𝑖,𝑦𝑗 +𝑓(𝑥𝑖−1,𝑦𝑗)

ℎ2𝑥

ቚ
𝜕2𝑓

𝜕𝑦2 𝑥=𝑥𝑖
𝑦=𝑦𝑗

=
𝑓 𝑥𝑖,𝑦𝑗+1 −2𝑓 𝑥𝑖,𝑦𝑗 +𝑓(𝑥𝑖,𝑦𝑗−1)

ℎ2𝑦

ቚ
𝜕2𝑓

𝜕𝑥 𝜕𝑦 𝑥=𝑥𝑖
𝑦=𝑦𝑗

=
𝑓 𝑥𝑖+1,𝑦𝑗+1 −𝑓 𝑥𝑖−1,𝑦𝑗+1 − 𝑓 𝑥𝑖+1,𝑦𝑗−1 −𝑓 𝑥𝑖−1,𝑦𝑗−1

2ℎ2𝑥ℎ
2
𝑦

x

y

i,ji-1,j i+1,j

i,j+1

i,j-1

𝑖,𝑗+1

𝑖+1,𝑗

𝑖,𝑗

𝑖−1,𝑗

∆ 𝑥

𝑖,𝑗−1

𝑥 𝑚

∆ 𝑦

𝑥 1
𝑥 2 𝑥 𝑖

𝑦 1

𝑦 2

𝑦 𝑖

𝑦 𝑛
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Example 1

The deflection y in a simply supported beam with a uniform load q and a tensile axial load T is 

given by

EI

xLqx

EI

Ty

dx

yd

2

)(
2

2 


Where 

X = location along the beam (in).

T = tension applied (lbs)

E = Young’s modulus of elasticity of the beam (psi).

I= second moment of area (in4)

Q= uniform loading intensity (lb/in)

L= length of beam (in)

 

q  

 

 

 

y  

 

 

 

L  
 

 

 

x  

 

 

 

 

 

 

T  T  

Figure 3 Simply supported beam for Example 

Given, 7200T 5400q in 75L Msi 30E 4in 120Ilb, lbsin, , and 

a) Find the deflection of the beam at  "50x Use a step size of "25Dx
and approximate the derivatives by central divided difference approximation.

Solution

a) Substituting the given values,

)120)(1030(2

)75()5400(

)120)(1030(

7200
662

2









xxy

dx

yd

)75(105.7102 76

2

2

xxy
dx

yd
  (1) 

0)0( xy 0)(  Lxy
B C
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Approximating the derivative
𝑑2y
𝑑𝑥2

at node i by the central divided difference approximation,

 
1i  i  1i  

2

11

2

2

)(

2

x

yyy

dx

yd iii

D


 

Figure central difference method.

We can rewrite the equation as

)75(105.7102
)(

2 76

2

11

iii

iii xxy
x

yyy


D

 

Since ∆ 𝑥 = 25,we have 4 nodes as given in Figure 3

 
  0x    25x    50x  

1i  2i  3i  4i  

  75x  

Figure Finite difference method from x= 0 

to x=75 with ∆ 𝑥 = 25.

The location of the 4 nodes then is

Writing the equation at each node, we get

Node 1: From the simply supported boundary condition at x= 0 we obtain

01 y

Node 2: Rewriting equation (1) for node 2 gives

)75(105.7102
)25(

2
22

7

2

6

2

123 xxy
yyy


 

)2575)(25(105.70016.0003202.00016.0 7

321  yyy
4

321 10375.90016.0003202.00016.0  yyy

𝑓 𝑥𝑖+1 − 2𝑓 𝑥𝑖 + 𝑓(𝑥𝑖−1)

ℎ2

)75(105.7102 76

2

2

xxy
dx

yd
 

𝑥1 = 0

𝑥2 = 𝑥1 + ∆𝑥 = 0 + 25 = 25

𝑥3 = 𝑥2 + ∆𝑥 = 25 + 25 = 50

𝑥4 = 𝑥3 + ∆𝑥 = 50 + 25 = 75
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Node 3: Rewriting equation (E1.4) for node 3 gives

)75(105.7102
)25(

2
33

7

3

6

2

234 xxy
yyy


 

)5075)(50(105.70016.0003202.00016.0 7

432  yyy

4

432 10375.90016.0003202.00016.0  yyy

Node 4: From the simply supported boundary condition at x = 75, we obtain 04 y

Above Equations are 4 simultaneous equations with 4 unknowns and can be written in matrix

form as






































































0

10375.9

10375.9

0

1000

0016.0003202.00016.00

00016.0003202.00016.0

0001

4

4

4

3

2

1

y

y

y

y

The above equations can be solved using on of the iterative methods such as the Gauss-Siedel

method). Solving the equations we get,










































0

5852.0

5852.0

0

4

3

2

1

y

y

y

y

"5852.0)()50( 22  yxyy

01 y
4

321 10375.90016.0003202.00016.0  yyy
4

432 10375.90016.0003202.00016.0  yyy
04 y

)75(105.7102
)(

2 76

2

11

iii

iii xxy
x

yyy


D

 
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Example :- Solve the following differential equation 𝑥
𝑑2𝑦

𝑑𝑥2
+ 𝑦 = 0

where

Subject to  boundary condition 𝑦 1 = 1, 𝑦 2 = 2

16 𝑥𝑖 𝑦𝑖+1 + (1 − 32𝑥𝑖 )𝑦𝑖 + 16 𝑥𝑖𝑦𝑖−1 = 0                              (1)

Solution-
𝑥𝑖 𝑥𝑖+1𝑥𝑖−1

𝑥
𝑖−

1

2
𝑥
𝑖+
1
2𝜕2𝑓

𝜕𝑥2
=  

𝑓 𝑥𝑖+1 −2𝑓 𝑥𝑖 +𝑓(𝑥𝑖−1)

ℎ2

𝜕2𝑓

𝜕𝑥2
=  

𝑦𝑖+1−2𝑦𝑖+𝑦𝑖−1

ℎ2

𝑥𝑖
𝑦𝑖+1−2𝑦𝑖+𝑦𝑖−1

ℎ2
+ 𝑦𝑖 = 0

𝑤𝑒 𝑘𝑛𝑜𝑤 𝑡ℎ𝑎𝑡 0 ≤ i ≤ n, 𝑥𝑖 = 1 + 𝑖ℎ, 𝑛ℎ = 1, 𝑎𝑛𝑑 𝑙𝑒𝑡 𝑛 = 4,

Substituting (i= 1,2,3) into the above  equation, one obtain

39 𝑦1 - 20 𝑦2 + 0 𝑦3= 20

24 𝑦1 - 47 𝑦2 + 24 𝑦3= 0

0 𝑦1 - 28 𝑦2 + 55𝑦3= 56

Using gauss elimination method , one obtain 

𝑦1 = 1.3512 , 𝑦2= 1.63495 𝑦3= 1.85053

by substituting into the main equation, one obtain

𝑛 = 4 =
1

ℎ
,

𝑥2

𝑥4 =2𝑥0 = 1

𝑥1 𝑥3
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Discretization methods (Finite Difference) using Taylor Series Expansion

Then, the value of f at a location  can be estimated from a Taylor series expanded about point x, 

that is

xx D

    ...)(
!

1
...

!3

1

!2

1
)()(

3

3

3
2

2

2

D



D




D




D




D n

n

n

x
x

f

n
x

x

f
x

x

f
x

x

f
xfxxf

In general, to obtain more accuracy, additional higher-order terms must be included.

• Higher order derivatives are unknown and can be dropped when the distance between grid

points is small.

• Taylor’s series expansion:

Consider a continuous function of x, namely, f(x), with all derivatives defined at 

Taylor Series

Problem: For a smooth function f(x),

Given: Values of f(xi) and its derivatives at xi

Find out: Value of f(x) in terms of f(xi), f(xi), f(xi), ….

x

y f(x)

f(xi)

xiIf the function f and its n+1 derivatives are

continuous on an interval containing xi and x,

then the value of the function f at x is given by

n
n

i
i

n

i
i

i
i

iii

Rxx
n

xf

xx
xf

xx
xf

xxxfxfxf





)(
!

)(
...           

)(
!3

)(
)(

!2

)(''
))((')()(

)(

3
)3(

2
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Finite Difference Approximations of the First Derivative using the Taylor Series 

(forward difference)

Assume we can expand a unction f(x) into a Taylor Series about the point xi+1

x

y f(x)

f(xi)

xi
xi+1

f(xi+1)

hn

n

ii
i

n

ii
i

ii
i

iiiii

Rxx
n

xf

xx
xf

xx
xf

xxxfxfxf









)(
!

)(
...           

)(
!3

)(
)(

!2

)(''
))((')()(

1

)(

3

1

)3(
2

111

h

 

ni

n

ii
iii h

n

xf
h

xf
h

xf
hxfxfxf

!

)(

!3

)(

!2

)("
)(')()(

)(
3

)3(
2

1

Ignore all of these terms

 


  1
)(

2
)3(

1

!

)(

!3

)(

!2

)(")()(
)(' ni

n

iiii
i h

n

xf
h

xf
h

xf

h

xfxf
xf

h

xfxf
xf ii

i

)()(
)(' 1 
  + 0(h)
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Finite Difference Approximations of the First Derivative using the Taylor Series 

(backward difference)

Assume we can expand a function

f(x) into a Taylor Series about the

point xi-1
x

y f(x)

f(xi-1)

xi-1 xi

f(xi)

h

n

n

ii
i

n

ii
i

ii
i

iiiii

Rxx
n

xf

xx
xf

xx
xf

xxxfxfxf









)(
!

)(
...           

)(
!3

)(
)(

!2

)(''
))((')()(

1

)(

3

1

)3(
2

111

-h

 

ni

n

ii
iii h

n

xf
h

xf
h

xf
hxfxfxf

!

)(

!3

)(

!2

)("
)(')()(

)(
3

)3(
2

1

)(
)()(

)(' 1 hO
h

xfxf
xf ii

i 


 

)()('

)()( 1

hO
h

f
xf

xfxff

i
i

iii






 

First backward

difference

 


  1
)(

2
)3(

1

!

)(

!3

)(

!2

)(")()(
)(' ni

n

iiii
i h

n

xf
h

xf
h

xf

h

xfxf
xf
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Finite Difference Approximations of the Second Derivative using the Taylor 

Series (forward difference)

y

x

f(x)

f(xi)

xi
xi+1

f(xi+1)

h

xi+2

f(xi+2)

 

ni

n

ii
iii h

n

xf
h

xf
h

xf
hxfxfxf

!

)(

!3

)(

!2

)("
)(')()(

)(
3

)3(
2

1

 

nni

n

ii
iii h

n

xf
h

xf
h

xf
hxfxfxf 2

!

)(
8

!3

)(
4

!2

)("
2)(')()(

)(
3

)3(
2

2

(1)

(2)

(eq. 2)- 2* ( eq.1)𝑓′′(𝑥𝑖)= 
𝑓 𝑥𝑖+2 −2𝑓 𝑥𝑖+1 +𝑓(𝑥𝑖)

ℎ2
−ℎ 𝑓(3)(𝑥𝑖)

)(
)(

)()("
22

2

hO
h

f
hO

h

f
xf ii

i 
DD


D



)(
2

2

hO
h

f

dx

fd i

n

xx

n

i


D





Recursive formula for

any order derivative
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)(
)()(2)(

)( 2

2

11 hO
h

xfxfxf
xf iii

i 


 



3
)3(

2

1
!3

)(

!2

)("
)(')()( h

xf
h

xf
hxfxfxf ii

iii



3
)3(

2

1
!3

)(

!2

)("
)(')()( h

xf
h

xf
hxfxfxf ii

iii

(1)

(2)

(1)+(2) 

4
)4(

2

11
!4

)(
2)()(2)()( h

xf
hxfxfxfxf i

iiii




  2
)4(

2

11

!4

)(
2

)()(2)(
)( h

xf

h

xfxfxf
xf iiii

i

Second Derivative Centered Difference Approximation (central difference)
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Centered Difference Approximation

)(
2

)()(
)(' 211 hO

h

xfxf
xf ii

i 


 



3
)3(

2

1
!3

)(

!2

)("
)(')()( h

xf
h

xf
hxfxfxf ii

iii



3
)3(

2

1
!3

)(

!2

)("
)(')()( h

xf
h

xf
hxfxfxf ii

iii

(1)

(2)

(1)-(2) 

3
)3(

11
!3

)(
2)('2)()( h

xf
hxfxfxf i

iii




  2
)3(

11

!3

)(
2

2

)()(
)(' h

xf

h

xfxf
xf iii

i

y

x

f(x)

f(xi)

xi xi+1

f(xi+1)

h

xi+2

f(xi+2)
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Higher Order Finite Difference Approximations




  )(
)()(2)(

)(" )3(

2

112
i

iii
i xhf

h

xfxfxf
xf

 


  1
)(

2
)3(

1

!

)(

!3

)(

!2

)(")()(
)(' ni

n

iiii
i h

n

xf
h

xf
h

xf

h

xfxf
xf

 
























1
)(

2
)3(

)3(12

1

!

)(

!3

)(

!2

...)(
)()(2)(

)()(
)('

ni

n

i

i
iii

ii
i

h
n

xf
h

xf

h

xhf
h

xfxfxf

h

xfxf
xf

...)('''
32

)(3)(4)(
)('

2

12 


  xf
h

h

xfxfxf
xf iii

i

)(
2

)(3)(4)(
)(' 212 hO

h

xfxfxf
xf iii

i 


 
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First Derivative 

Method Formula Truncation 

Error 

Two-point forward difference 
𝑓′ 𝑥𝑖 =

𝑓 𝑥𝑖+1 − 𝑓(𝑥𝑖)

ℎ

0(h)

Three-point forward difference 𝑓′ 𝑥𝑖 =
−3 𝑓 𝑥𝑖 +4 𝑓 𝑥𝑖+1 −𝑓 𝑥𝑖+2

2ℎ
0(ℎ2)

Two-point central difference 
𝑓′ 𝑥𝑖 =

𝑓 𝑥𝑖+1 − 𝑓(𝑥𝑖−1)

2ℎ

0(h)

Two-point backward difference 𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖 −𝑓(𝑥𝑖−1)

ℎ
0(ℎ2)

three-point central difference 
𝑓′ 𝑥𝑖 =

𝑓 𝑥𝑖−2 − 4 𝑓 𝑥𝑖−1 + 3 𝑓 𝑥𝑖
2ℎ

0(ℎ2)

Four-point central difference 𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖−2 −8 𝑓 𝑥𝑖−1 +8 𝑓 𝑥𝑖+1 −𝑓 𝑥𝑖+2

12ℎ
0(ℎ4)
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Second Derivative 

Method Formula Truncation 

Error 

Three-point forward difference 
𝑓′′ 𝑥𝑖 =

𝑓 𝑥𝑖 − 2 𝑓 𝑥𝑖+1 + 𝑓 𝑥𝑖+2
ℎ2

0(h)

Four-point forward difference 𝑓′′ 𝑥𝑖 =
2 𝑓 𝑥𝑖 −5 𝑓 𝑥𝑖+1 +4𝑓 𝑥𝑖+2 −𝑓 𝑥𝑖+3

ℎ2
0(ℎ2)

Three-point backward difference 

𝑓′′ 𝑥𝑖 =
𝑓 𝑥𝑖−2 − 2𝑓 𝑥𝑖−1 + 𝑓 𝑥𝑖

ℎ2
0(h)

Four -point backward difference 𝑓′′ 𝑥𝑖 =
−3 𝑓 𝑥𝑖−3 +4 𝑓 𝑥𝑖−2 −5 𝑓 𝑥𝑖−1 +2 𝑓 𝑥𝑖

ℎ2
0(ℎ2)

Three-point central difference 𝑓′′ 𝑥𝑖 = 
𝑓 𝑥𝑖−1 −2 𝑓 𝑥𝑖 + 𝑓 𝑥𝑖+1

ℎ2
0(ℎ2)

Five-point central difference 𝑓′′ 𝑥𝑖 = 
− 𝑓 𝑥𝑖−2 +16 𝑓 𝑥𝑖−1 −30 𝑓 𝑥𝑖+1 −16𝑓 𝑥𝑖+1 −𝑓 𝑥𝑖+2

12ℎ2

0(ℎ4)
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A partial differential equation (PDE) is an equation that involves an unknown function (the dependent

variable) and some of its partial derivatives with respect to two or more independent variables. The

classification of PDEs is important for the numerical solution you choose.
1 Elliptic 2 Hyperbolic 

3 Parabolic 

For example, Laplace's 

equation: 

For example, the heat or

diffusion EquationFor example the 1-D 

wave equation 

Finite Difference Methods for Solving PDE's

𝜕2 𝑢

𝜕𝑥2
+
𝜕2 𝑢

𝜕𝑦2
= 0

Using finite difference method to solve the system

2. For nodes where u is unknown for example :

4. Solve this banded system with an efficient scheme. Using 

Gauss-Seidel iteratively.

discretize

𝜕2 𝑢

𝜕𝑦2
= 

𝑢𝑖,𝑗+1 −2 𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

(∆𝑦)2
+0(∆𝑦2)

𝜕2 𝑢

𝜕𝑥2
= 

𝑢𝑖+1,𝑗 −2 𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2
+ 0(∆𝑥2)

When ∆𝑥 = ∆𝑦 = ℎ, substitute into main eqaution

𝑢𝑖+1,𝑗 −2 𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2
+ 

𝑢𝑖,𝑗+1 −2 𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

(∆𝑦)2
+ 0ℎ2 = 0

𝑢 𝑖,𝑗+1

𝑢 𝑖+1,𝑗𝑢 𝑖,𝑗𝑢 𝑖−1,𝑗

∆ 𝑥
𝑢 𝑖,𝑗−1

𝑥 𝑚

𝑦

𝑥

∆ 𝑦

𝑥 1 𝑥 2 𝑥 𝑖

𝑦 1

𝑦 2

𝑦 𝑖

𝑦 𝑛

𝑢 𝑖,𝑗𝑢𝑖−1,𝑗 𝑢𝑖+1,𝑗

𝑢𝑖,𝑗+1

𝑢𝑖,𝑗−1

3. Using Boundary Conditions, write, n*m equations for

u(xi=1:m, yj=1:n) or n*m unknowns.

1. Discretize domain into grid of evenly spaced points.

𝜕2 𝑢

𝜕𝑥2
+
𝜕2 𝑢

𝜕𝑦2
= 0

𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2

𝑐2
𝜕2 𝑢

𝜕𝑥2
=
𝜕2 𝑢

𝜕𝑡2
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The Laplace Equation 𝜕2 𝑢

𝜕𝑥2
+

𝜕2 𝑢

𝜕𝑦2
= 0

𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 − 4 𝑢𝑖,𝑗 = 0

The temperature distribution can be estimated by

discretizing the Laplace equation at 9 points and

solving the system of linear equations.

𝑢𝑖,𝑗 =
1

4
(𝑢𝑖+1,𝑗+𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1)

This shows that the value of 𝑢𝑖,𝑗is the average of

its values at the four neighboring diagonal mesh

points. is called the diagonal five-point formula

which is represented in Figure.
𝑏 1,5

𝑏2,5 𝑏 3,5 𝑏 4,5 𝑏 5,5

𝑏 1,4

𝑏 1,3

𝑏 1,2

𝑏 1,1

𝑏 2,1 𝑏 3,1
𝑏 4,1 𝑏 5,1

𝑏 5,4

𝑏 5,3

𝑏5,2

𝑢 4,4
𝑢 3,4𝑢 2,4

𝑢 4,3
𝑢 3,3𝑢 2,3

𝑢 2,2 𝑢 3,2 𝑢 4,2

𝑦

𝑥

The Laplace molecule for ∆𝑥 = ∆𝑦 = ℎ

𝑢 𝑖,𝑗

𝑢𝑖−1,𝑗 𝑢𝑖+1,𝑗

𝑢𝑖,𝑗+1

𝑢𝑖,𝑗−1

𝑢2,3 =
1

4
(𝑏1,3+𝑢3,3 + 𝑢2,4 + 𝑢2,2)

𝑢3,4 =
1

4
(𝑢2,4+𝑢4,4 + 𝑏3,5 + 𝑢3,3)

𝑢3,2 =
1

4
(𝑢2,2+𝑢4,2 + 𝑢3,3 + 𝑢3,1)

𝑢4,3 =
1

4
(𝑢3,3+𝑏5,3 + 𝑢4,4 + 𝑢4,2)

1 Elliptic equation  

∆ 𝑥

∆ 𝑦
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Having found all the nine values of 𝑢𝑖,𝑗once, their accuracy is improved by either of the

following iterative methods. In each case, the method is repeated until the difference between

two consecutive iterates becomes negligible.

(i) Jacobi’s method. Denoting the nth iterative value of 𝑢𝑖,𝑗, by 𝑢𝑛𝑖,𝑗, the iterative formula to

solve is

It gives improved values of 𝑢𝑖,𝑗 at the interior mesh points and is called the point Jacobi’s

formula.

It utilizes the latest iterative value available and scans the mesh points symmetrically from left

to right along successive rows.

𝑢𝑛+1𝑖,𝑗 =
1

4
(𝑢𝑛

𝑖+1,𝑗
+ 𝑢𝑛𝑖−1,𝑗 + 𝑢𝑛𝑖,𝑗+1 + 𝑢𝑛𝑖,𝑗−1)

𝑢𝑛+1𝑖,𝑗 =
1

4
(𝑢𝑛

𝑖+1,𝑗
+ 𝑢𝑛+1𝑖−1,𝑗 + 𝑢𝑛+1𝑖,𝑗+1 + 𝑢𝑛𝑖,𝑗−1)

(ii) Gauss-Seidal method. In this method, the iteration formula is
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The vertical plate is discretizes below:

𝜕2 𝑇

𝜕𝑥2
+

𝜕2 𝑇

𝜕𝑦2
= 0The governing equation is

𝑇 𝑥 = 2.7, 𝑦 = 500C ; 𝑇 𝑥 = 0, 𝑦 = 500C ; 
𝑇 𝑥, 𝑦 = 2.7 = 1000C ; 𝑇 𝑥, 𝑦 = 0 = 500C.

∆ 𝑥 = ∆ 𝑦 = 0.9 𝑐𝑚.
We know that the diagonal five-point formula 

We need to find temperatures 𝑇 1,1, 𝑇 1,2, 𝑇 2,1 and 𝑇 2,2

,,, (four unknowns

50 + 50 + 𝑇1 2 + 𝑇2 1 − 4𝑇1 1 = 0

−4𝑇1 1 + 𝑇1 2 + 𝑇2 1 = −100 (1)
or

500C

500C

𝑇 2,2𝑇 1,2

𝑇 2,1
𝑇 1,1

𝑦

𝑥

1000C

500C

2.7 𝑐m

2.7 𝑐m

Example: A vertical steel plate of dimensions 2.7 cm X 2.7 cm and negligible thickness is in

steady state conditions. On the top edge, the temperature is 1000C and on the bottom the

temperature is fixed at 500C. The temperature on the left and right edges are 500C. Solve to

obtain heat distribution.

Apply FDE at node (1,1),

Node or grid point (1,2),

50 + 𝑇1 1 + 𝑇2 2 + 100 − 4𝑇1 2 = 0

or 𝑇1 1 − 4𝑇1 2 + 𝑇2 2 = −150 (2)

𝑢𝑖,𝑗 =
1

4
(𝑢𝑖+1,𝑗+𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1)
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Node or grid point (2,1),

𝑇1 1 + 50 − 4 𝑇21 + 𝑇2 2 + 50 = 0

or 𝑇1 1 − 4𝑇2 1 + 𝑇2 2 = −100 (3)

Node or grid point (2,2),

𝑇1 2 + 𝑇2 1 − 4 𝑇22 + 100 + 50 = 0

𝑇1 2 + 𝑇2 1 − 4𝑇2 2 = −150 (4)

solve this system of linear equations.

From equations 1, 2, 3 and 4 we have 

−4
1

1
−4

1
0

1 0 −4
0 1 1

0
1
1

−4

𝑇1 1
𝑇1 2
𝑇2 1
𝑇2 2

= 

−100
−150
−100
−150

−4𝑇1 1 + 𝑇1 2 + 𝑇2 1 = −100 (1)

𝑇1 1 − 4𝑇1 2 + 𝑇2 2 = −150 (2)

𝑇1 1 − 4𝑇2 1 + 𝑇2 2 = −100 (3)

𝑇1 2 + 𝑇2 1 − 4𝑇2 2 = −150 (4)
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Example Consider steady two-dimensional heat transfer in a long solid body whose cross section

is given in the figure. The temperatures at the selected nodes and the thermal conditions on the

boundaries are as shown. The thermal conductivity of the body is k 180 W/m · °C, and heat is

generated in the body uniformly at a rate of g = 10710W/m3. Using the finite difference method

with a mesh size of Δx =Δy = 10 cm, determine the temperatures at nodes 1, 2, 3, and 4 and

Analysis: The nodal spacing is given to be Δx =Δx = l = 0.1

m, and the general finite difference form of an interior node

equation for steady two-dimensional heat conduction for the

case of constant heat generation is expressed as

There is symmetry about a vertical line passing through

the middle of the region, and thus we need to consider

only half of the region. Then,

𝑢𝑖,𝑗 =
1

4
(𝑢𝑖+1,𝑗+𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1)

𝑇1 = 𝑇2 𝑎𝑛𝑑 𝑇3 = 𝑇4

𝑇𝑙𝑒𝑓𝑡 + 𝑇𝑡𝑜𝑝 + 𝑇𝑏𝑜𝑡𝑡𝑜𝑚 + 𝑇𝑟𝑖𝑔ℎ𝑡 − 4 𝑇𝑛𝑜𝑑𝑒 +
𝑔𝑛𝑜𝑑𝑒 𝑙

2

𝑘
= 0

𝑛𝑜𝑑𝑒 1 100 + 120 + 𝑇2 + 𝑇3 − 4 𝑇1 +
𝑔𝑙2

𝑘
= 0

𝑛𝑜𝑑𝑒 3 150 + 200 + 𝑇1 + 𝑇4 − 4 𝑇3 +
𝑔𝑙2

𝑘
= 0

noting that 𝑇1= 𝑇2 and 𝑇3= 𝑇4 and substituting 

200 + 𝑇3 − 3𝑇1 +
0.12 × 107

180
=0

350 + 𝑇1 − 3𝑇3 +
0.12 × 107

180
=0

The solution of the above system is  

𝑇1= 𝑇2 = 411.5 C and 𝑇3= 𝑇4 = 439 C 
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Explicit and implicit methods are approaches used in numerical analysis for obtaining

numerical approximations to the solutions of time-dependent differential equations.

Explicit Method = a formulation of equation into a FD equation that expresses one unknown in

terms of the known values or express all future (t + Δt) values, T(x, t + Δt), in terms of current (t)

and previous (t - Δt) information, which is known.

Explicit and Implicit methods

Implicit methods calculate a solution by solving an equation involving both the current state of

the system and the later one or Implicit Schemes express all future (t + Δt) values, T(x, t + Δt),

in terms of other future (t + Δt), current (t), and sometimes previous (t - Δt) information.

Finite Difference Solution of Partial Differential Equations: Parabolic Equation 

The finite difference approximation to the PDE is then

• Solve the p.d.e.
𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2

Evaluate the p.d.e. at (i,j),  (i = spatial index and j = temporal index

Depending on how
𝜕𝑢

𝜕𝑡
is approximated, we have three basic schemes:

1. Explicit method 2. Implicit method 3. Crank–Nicolson method .

known values

unknown values

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Partial_differential_equation
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ቤ
𝜕𝑢

𝜕𝑡
𝑖,𝑗

=
𝑢 𝑥𝑖,𝑗+1 − 𝑢(𝑥𝑖,𝑗)

∆𝑡

𝑢 𝑖,𝑗+1

𝑢 𝑖+1,𝑗𝑢 𝑖,𝑗𝑢 𝑖−1,𝑗

∆ 𝑥

𝑢 𝑖,𝑗−1

𝑥 𝑚

𝑡

𝑥

∆ 𝑡

𝑢 = 𝑓(𝑥)

𝑢 = 0

𝑢 = 0

1. The explicit method - one unknown or nodal value is directly expressed in terms of known

pivotal values. • The process advancing from a known time level(s) to the unknown time level

is called “time marching”.

• Let’s use a forward difference approximation

to evaluate   
𝜕𝑢

𝜕𝑡
at 𝑖, 𝑗

In this approaches using a forward difference at time t and a second order central

difference for the space derivatives.

ቚ
𝜕2 𝑢

𝜕𝑥2 𝑖,𝑗
= 

𝑢𝑖+1,𝑗 −2 𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2

Use a central difference approximation to evaluate 
𝜕2 𝑢

𝜕𝑥2
at 𝑖, 𝑗

The explicit method

Define the parameter r as 𝑟 =
𝐷 ∆ 𝑡

(∆𝑥)2𝑢𝑖,𝑗+1=𝑢𝑖,𝑗 + ∆𝑡 D 
𝑢𝑖+1,𝑗 −2 𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2

𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

∆𝑡
= D 

𝑢𝑖+1,𝑗 −2 𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2

Substituting into the main equation, one obtain

known values

unknown values

𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
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𝑢𝑖,𝑗+1 = 𝑟 𝑢𝑖+1,𝑗+ 1 − 2𝑟 𝑢𝑖,𝑗 + 𝑟 𝑢𝑖−1,𝑗

(𝑢𝑖,𝑗+1− 𝑢𝑖,𝑗) = 𝑟 (𝑢𝑖+1,𝑗 − 2 𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)

We can write out the matrix system of equations we will solve numerically for the temperature u. 

Finite difference method PDE example (heat equation) 

𝑢𝑖,𝑗+1 = 𝑟 𝑢𝑖+1,𝑗+ 1 − 2𝑟 𝑢𝑖,𝑗 + 𝑟 𝑢𝑖−1,𝑗 can be written as 𝑢 𝑗+1= A 𝑢𝑗
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Solve the heat conduction equation 𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2

0 < x < 1i) 𝑢 = 0 𝑎𝑡 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 1 , 𝑡 > 0 (the boundary condition)

ii) 𝑢 = 2𝑥 ,         for 0 ≤ 𝑥 ≤
1

2
𝑢 = 2 1 – 𝑥 , 𝑓𝑜𝑟

1

2
≤ 𝑥 ≤ 1

𝑡 = 0 (the initial condition)

Δ 𝑥 = ℎ = 0.1 Δ𝑡 = 0.001
𝑟 =

∆ 𝑡

(∆𝑥)2
= 

1

10

u0,0 = 0 , u1,0 = 0.2 , u3,0 = 0.6 , u2,0 = 0.4 u4,0 = 0.8 , u5,0 = 1 ,

u6,0 = 0.8 , u7,0 = 0.6 u8,0 = 0.4 , u9,0 = 0.2 , u10,0 = 0

when 𝑗 = 0

𝑢𝑖,𝑗+1 =  
1

10
𝑢𝑖+1,𝑗+  0.8 𝑢𝑖,𝑗 +   

1

10
𝑢𝑖−1,𝑗

𝑢2,1 =  
1

10
𝑢3,0+  0.8 𝑢2,0 +

1

10
𝑢1,0 = 0.4

𝑢1,1 =  
1

10
𝑢2,0+  0.8 𝑢1,0 +

1

10
𝑢0,0 = 0.2

𝑢3,1 =  
1

10
𝑢4,0+  0.8 𝑢3, 0 +

1

10
𝑢2,0 = 0.6

𝑢4,1 =  
1

10
𝑢5,0+  0.8 𝑢4, 0 +

1

10
𝑢3,0 = 0.8

𝑢5,1 =  
1

10
𝑢6,0+  0.8 𝑢5, 0 +

1

10
𝑢4,0 = 1

𝑢6,1 =  
1

10
𝑢7,0+  0.8 𝑢6, 0 +

1

10
𝑢5,0 = 0.8

𝑢 𝑖,𝑗+1

𝑢 𝑖+1,𝑗𝑢 𝑖,𝑗
𝑢 𝑖−1,𝑗

∆ 𝑥

𝑥 𝑚

𝑦

𝑥

∆ 𝑡

𝑢 = 𝑓(𝑥)

𝑢 = 0

𝑢 = 0

𝑢𝑖,𝑗+1 = 𝑟 𝑢𝑖+1,𝑗+ 1 − 2𝑟 𝑢𝑖,𝑗 + 𝑟 𝑢𝑖−1,𝑗 𝑟 =
1

10

solution

using the Explicit Method 

Example :-Consider a metal rod is heated for a long time in the center and keeping the ends in

contact with blocks of melting ice and that the initial temperature distribution in non-

dimensional form (unitless) is
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Example: Consider a steel rod that is subjected to a temperature of 100 𝐶 on the left end and 25

C on the right end. If the rod is of length 0.05 m, use the explicit method to find the temperature

distribution in the rod from 𝑡 = 0 and 𝑡 = 9 seconds. Use ∆𝑥 = 0.01 𝑎𝑛𝑑 ∆𝑡 = 3 𝑠 .

Given: 𝑘 = 54
𝑊

𝑚2 𝐾
𝜌 = 7800

𝑘𝑔

𝑚3,𝐶 = 490
𝑗

𝑘𝑔.𝐾

The initial temperature of the rod is 20 C.

Solution
0i 1 2 3 4 5

m01.0

CT  25CT 100

Recall,

therefore,

Then,

C

k


 

4907800

54




sm /104129.1 25

 2
x

t

D

D


 2

5

01.0

3
104129.1  4239.0

Number of time steps,

Boundary Conditions

All internal nodes are at        

for               This can be 

represented as,

t
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Nodal temperatures when , :

We can now calculate the temperature at each node explicitly using the equation formulated

earlier,

sec0t

CT 1000

0

nodesInterior  

20

20

20

20

0

4

0

3

0

2

0

1





















CT

CT

CT

CT

CT  250

5

0j

 j

i

j

i

j

i

j

i

j

i TTTTT 11

1 2 

  
Nodal temperatures when

setting 

Nodal temperatures when             ,         :

sec3t

ConditionBoundary1001

0  CT

 
 
 

C

TTTTT











912.53

912.3320

804239.020

100)20(2204239.020

2 0

0

0

1

0

2

0

1

1

1   
 
 

C

TTTTT











20

020

04239.020

20)20(2204239.020

2 0

1

0

2

0

3

0

2

1

2 

0i

1i 2i

ConditionBoundary1001

0  CT

sec3t 1j

nodesInterior  

120.22

20

20

912.53

1

4

1

3

1

2

1

1





















CT

CT

CT

CT

ConditionBoundary251

5  CT

0j



19.02.2025
Assistant Prof. Dr. Eng. Ibrahim Thamer NazzalNumerical Analyses

38

Nodal temperatures when              

setting            ,

Nodal temperatures when             ,         :
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sec9tNodal temperatures when              ,          :3j
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To better visualize the temperature variation at different locations at different times, the 
temperature distribution along the length of the rod at different times is plotted below.


