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What is a Finite Difference Equation?
A finite difference method (FDM) is is one of the available numerical methods for solving
differential equations by approximating derivatives with finite differences. Both the spatial
domain and time interval (if applicable) are discretized, or broken into a finite number ofsteps.

In general real life EM problems cannot be solved by using the analvtu};(al) methods, because;
X

1. The PDE is not linear,

2. The solution region is complex,

3. The boundary conditions are of mixed types, flx +A4x)
4

The boundary conditions are time dependent, f(x)

The numerical methods are based on replacing. the differential
equations by algebraic equations (finite difference equations).

Tangent line

For finite difference method, this is done by replacing the derivatives by ditterences.

A function f that depends-on x:
The first derivative of f(x) at a point is equivalent to the slope of a line tangent to the curve at

that point. A (e Ax))—
= lim L= |y LA

dx Ax—0 Ax Ax—0 Ax
If we don’t take the indicated limit, we will have the following approximate relation for the derivative:

4 () =~ [ +4%) — () The differential —= (f ) & the difference
dx Ax )
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https://deepai.org/machine-learning-glossary-and-terms/partial-differential-equation
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Finite_difference_approximation
https://en.wikipedia.org/wiki/Discretization

Finite Difference Approximation Of The Derivative
Steps of finite difference solution:

® Divide the solution region into a grid of nodes,
® Approximate the given differential equation by finite difference equivalent,
® Solve the differential equations subject to the boundary conditions and/or initial conditions.

The rate of the change of the function with respect to the variable x is-accounted between the

current value at: x = xi f
X
and the step forward at x i +1 = xi + Ax fﬁx) _ %)
f(Xi+1 """""""""""""""""""""

foiat X=Xy fatx =x fi.oat X =X, )// s
X=X +4dx,and X ; ; = X —A4x, angent of
ative f . 60 e (Vo> patx
The derivative [ () of a function f(x) e P :
at the point X = x; is defined by: (%] v
(X

|@ = lim f (xi+Ax))—f (x;) _AX | AX X

FGH)~f@) _ . A _AF Af Xip X Xi+1
- AlalcTo Ax B Alplcrlloﬂ T A = 7, Thedifferential % ~ % the difference
where h = Ax

It is important to be aware of the fact that smaller the steps Ax the closer the values between the
differential and difference of the rate change of the function
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Three Basic Finite Difference Methods

In finite difference approximations of the slope, we can use values of the function in the
neighborhood of the point to achieve the goal. There are 3 ways to express differentials of a function:

f(x)

1. Forward difference is the rate of change of the function f(x) f(x)
values between the “current” step at x;, and the function
value at a step “forward” at x;,,and equal to the slope of Approximated
the line that connects points: (x; f(x;)) and slope \
(Xir1, f(Xi41)): i \
i h | True
ap| ) FED () — F() febit——>| slope
dx lx=x; Xi+1 —Xj - h | i E
x'_l_ I xl. bx'
d(f) _ f(xig2) = f(xig) l Xi t+1
- h Forward difference
x=x;i+1
a(f) _ f(xiz3) — fxiz2) f(x) True
v = n slope
xX=x;+2

Approximated
slope

2. Backward difference Is the rate of change of the function
values between the “current” step at x;, and the function value
at a step- “back™ at x;_;, which is the slope of the line that
connects.points: ((x;, f (x;))and (x;_1, f(x;-1):

a(f) _ fGe)—f(xi-1)

ax x=xl~_ Xi —Xj-1

— fxi)—f(xi—1)

h Numerical Analyses
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3. Central difference is the rate of change of function f(x) is accounted for between the step at
back at (x-4x) and the step ahead of X, i.e. (x+4x), which is the slope of the line that connects

points:(x;_q, f (x;—1)and (x4, f (Xi41): f(x)

Central difference

a(f) — fGiva)=f(xi-1) f(xip1) — f(xi—1)

dx — s Xirtq1 —Xi_
X=X; i+1 i—-1 2h

Approximated
slope N

The step size in above is “2h” which is “big” in
compromising the accuracy.

A more accurate “central difference scheme”_is to
reduce the step size in each forward and backward

direction by half as show X1 Xi Xiv1 X
f(x)t+ Ax=h, the step size | Tangent of f(x)
. at x = x,
b ‘“"““““"“'j,%"fl fx)
We will have the corresponding expressions: 1 Bl g
o frmmmmme e S e

| E |
ap| (W) TR -
dx ly—x; h i Ax|

B

H —
.
,f:;?
-

+
r3
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The second order derivative

1. The forward difference scheme
The second order derivative of the function at x; can be derived by the following procedure

62f :i (_d(f))| — llm Vflxi+1_Vf|xi ~ Vf|xl-+1_‘7f|xl- — Vf|xi+1_\7f|xi
axz X=Xi dx dx X=Xi Ax—0 Ax Ax h central-difference

A backward-difference
f(ia)=f(xigq) _ f(xiga)—fGxp) _ \1——
h

h _ fxig2)—2f(xir1)+f(xp) "~ forward-differe
h - h2

2. The backward difference scheme
and the send order derivatives in the form:

v fl .—\7f| VoV f VFlo—VF ,
dx \dx Jy=y, Ax—0 Ax Ax h fx - Bx
fl)=fxi—)  Flxj_q)—flxi_p)
f|  _d (d<f>)| TR T PG =2f G D) (i)
0x?ly=yx;, dx \ dx ) h h?
— M
3. The central“difference scheme
Vfle-%_Vf Vf'xH_%_Vf Vflx_'_l_vf
X, 1 X, 1 b2 X, 1
dl (d(f))| — lim 2~ 2 — i—3
dx \ dx Jly=y; Ax—0 Ax Ax h
fleip)-fxp)  flxp)—flei—q)
2f| _d (d(f))| T T ) =2f )+ (i)
0x2|,— dx \ dx h h?2
X=X X=X 19.02.2025 °
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Example : Comparing numerical and analytical differentiation.

Consider the function f(x) = x3.Calculate its first derivative at point x = 3 numerically with
the forward, backward, and central finite difference formulas and using:

(@) Pointsx =2,x =3, and x = 4. (b) Points x = 2.75, x = 3, and x = 3.25.
Compare the results with the exact (analytical) derivative.
SOLUTION
Analytical differentiation: The derivative of the function is f'(x) = 3 x2% and the value.ef
the derivative at x =3 isf’(3) = 3 (32 ) = 27. ,,:\-L,\f
The points used for numerical differentiation are: \
x 2 3 s 1,
f(x) 8 27 64 | | :

Using the derivatives the forward, backward, and central finite difference formulas are:
Forward finite difference

d(f) f(xl+1) f(x;) ae) _ [@-f(3) _ 6427 _ 13727 _
—= » == 37 error = | 57 X 100| = 37.04%
X=Xi
Backward finite difference
d 19 — 27
A T gy A0 SOTB T8 2 9 error = | x 1oo| = 29.63%
ax lx=x; =3  3-2 1 27
Central finite difference
@ f(xl'l'l) f(xl 1) f(4)_f(2) — 64 —8 — 28 error = ‘28 B 27 X 100 — 3704%
dx 2h = 4-2 2 27
X=Xi
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(b)The points used for numerical differentiation are:

x 2.75 3 3.25
f(x) 2.75 3 27 3.25 3

Using the derivatives the forward, backward, and central finite difference formulas are:
Forward finite difference

27
Central finite difference

d(f) _ f(xizq) — f(x) » a() _ [B29-f(3) _325°-27 _ 5g 3195
dx h dx ly=3 3.25—3 0.25
X=Xi
29.3125 — 27
error = ‘ 7 X 100‘ = 8.565%
Backward finite difference
N Fs _ _ 3
aN| D (xig) » aR)| 2 fB)Zf@R7S) _ 2722757 _ 5, 8195
24.8125 — 27
error = X 100| = 8.102 %

— 3_ 3
dif)|  flre) — f(xiz1) » @| = [B25)°/@75) _ 325 -275" _ 570625
d_ = o dx ly=3 3.25 -2.75 0.5
x X=Xi
27.0625 — 27
error = x 100 = 0.2315%
27 Numeric IAnaIyses Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal 19.02.2025



Finite Difference Schemes of partial derivatives

For a function f(x,y) with two independent variables, the partial derivatives with respect to x and
y at the point (x;, y;) can be approximated into three basic scheme :

1. Forward difference is the rate of change of the function

values between the “current” step at (x;y;), and the function
value at a step “forward” at(x;1,¥;)):
of
, ) — .7 —
% — f(x”;"yf)_gx“yf) _ f(xivny;) = f oo y))
y=)’j 1+1 L hx >

of|  _flayi)~fawyp  f(xuyien) = f@e W) (ED)

0 X=Xj , —A7 -

y y=y;_ Yij+1~Yj hy

2. Backward difference is the rate.of-change of the function 4
values between the “current” step at Xi, Yo and the function . . . .

value at a step “back™ at x;_4,¥j, N
) ° .1;J+] ) )
a_f — f(xiJYj)_f(xi—l»yj) f(xl,y]) — f(xi_l,yj) . h-‘-h-
dx |X=%i xXi —xj—1 = h . o .o e )
y=] X -1y L i+, ]
hy
. Y
of _ flay)=flayj-1) f(xi»)’j) - f(xi:)’j—l) =2 ¢ ? 'i,j-l ! ?
oyl X=Xi~— V=¥ - h
Y=Yj Y =1® . ° ° o »
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3. Central difference is the rate of change of function f(x) Is accounted for between the step at

back at (x;_1,¥;) and the step ahead of (x;41,¥;) for— |x x4 ®
=Yj
of| _ = Sy Ciay)  f () — f(Kieay))
0x xfxi. Xi+1 ~Xi-1 = L
And is accounted for between the step atback at
(x;,¥j—1) and the step ahead of (x;, y11) forL ay =1, Xy
y=Yj I o
Z_;: x=xi: f(xirj;j.-:-ll):g(ii;yj_l) _ f(xu y]+1) — f(xu y]_l)
y=y; o 2h i-1 i+1
The step size in above is “2h” which is “big” in Yn
compromising the accuracy. i1
A more accurate “central difference
scheme” is to reduce the step size in 1 P41,
each forward and backward-direction by 'b_‘_“ ;
half as show
We will have the corresponding expressions: . ) (S
of B f(xi+% J’j)_f(xi_% Vi) Ay
X=Xi ™
0x Y=y, h ) A
af f(LY1)f(lJ’1) Y1 g <
dy | x=x1= 3 xq1 X2 X X' m
Y=Yj ¢ 19.02.2025
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The second order derivative

The second order derivative of the function

Yn
at x and y can be derived by the following Liiil
az_f _f(xi+1:yj)—2f(xi»3/j)+f(xi—1»J’j)
ox2|X=Xi™ h2 iy . .
X Y=Yj x =1 ._.ij_.l+1,]
02_f :f(xi»J’j+1)—Zf(xirJ’j)'i'f(xiJ’j—O
dy2|x=x; h2, Yi { -i,j—l
Y=Yj A y
Y 2|
< A x »
Vi - -
xq1 X2 X i X m
0%f _f i1 yje) - (icyje)] = F(xir 1,y j-1) = F(xim1.¥j-1)] A
X=Xj 2 p2
0x 0y y=y;- 2h%xh?, y
Lj+
i" .j .I.I "lg I
1,J-1
X
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Example 1

The deflection y in a simply supported beam with a uniform load g and a tensile axial load T is

given by v 1
d’y Ty _gx(L-x) q
dx* El 2El | A A A A BN S
T X . T
Where —’
X = location along the beam (in). 777 L 7
T = tension applied (Ibs) ) |
E = Young’s modulus of elasticity of the beam (psi). . gC

I= second moment of area (in?) y(x=0)=0 y(x=L)=0
Q= uniform loading intensity (Ib/in)

L= length of beam (in) Figure 3 Simply supported beam for Example
Given, T =7200 v, q=>5400) ibsin, L —=75in E=30Msi, and | =120in*

a) Find the deflection of thebeam at X = 50" Use a step size of AX = 25"

and approximate the derivatives by central divided difference approximation.
Solution

a) Substituting the given values,

d’yc,~ 7200y  (5400)x(75-x)

dx?  (30x10°)(120) 2(30x10°)(120)
2

‘; Y _2x10°y =7.5x107 X(75- X) (1)
X
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2
Approximating the derivative % at node i by the central divided difference approximation,

2 2
A7y L Yia = 2¥i + Y 0%y 2x10°y =75x107x(75-x)
dx (AX) dx
We can rewrite the equation as
° e °
Re (Ax)lz L _2x107°y, =7.5x107"x. (75— X;) Figure central difference method.
Since A x = 25, we have 4 nodes as given in Figure 3 Flxio) — 2f(xp) + f(x;—1)
The location of the 4 nodes then is 2
x1 =0 i=1 i=2 i =3 i=4
X, =x1 +Ax =04+ 25 =25 ° ° ® °
Xx=0 X=25 X =50 X=175
X3 = Xy +Ax =25+ 25 =50
X4 =x3+Ax =50+25=75 Figure Finite difference method from x= 0
Writing the equation at each hode, we get to x=75 with A x = 25.

Node 1. From the simply-supported boundary condition at x= 0 we obtain
y: =0

Node 2...Rewriting equation (1) for node 2 gives

Y3o ZY2 + Y,

—2x107°%y, =7.5x107"x,(75-X,)

25)?
0.00(16§/1 —0.003202y, +0.0016y, = 7.5x107" (25)(75—25)
0.0016y, —0.003202y, +0.0016y, = 9.375x10™"
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Node 3: Rewriting equation (E1.4) for node 3 gives vy, . —2y. +y. |

X 2
: (%; Y2 _2x10°y, = 7.5x107 %, (75— X,) v

0.0016y, —0.003202y, +0.0016y, = 7.5x10 (50)(75—50)
0.0016y, —0.003202y, +0.0016y, =9.375x10™

Node 4. From the simp(l)y supported boundary condition at x = 75, we obtain Y, = 0
Y1 =
0.0016y, —0.003202y, +0.0016y, =9.375x10"

0.0016y, —0.003202y, +0.0016y; <9.375x10™*

—2x107°y, =7.5x107" X, (75— X,)

Y4 =0
Above Equations are 4 simultaneous equations with 4 unknowns and can be written in matrix
form as - o4 r -
1 0 0 0 vl |0
0.0016 -0.003202 0.0016 0 Yo | 9.375x107*
0 0.0016 - —0.003202 0.0016| v, 19.375x10™*
0 0 0 1 Jly,] |0

The above equations can be solved using on of the iterative methods such as the Gauss-Siedel
method). ‘Solving the equations we get,

v | [0

y,| |-0.5852

v.| |-05852| Yy(50) =Yy(X,)~=Yy, =-0.5852"
Vel O ]
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Example :- Solve the following differential equation x &Y 4 y =0
where dx

Subject to boundary condition y(1) =1,y(2) = 2
Solution-

Xi-1 xi_% Xi xi_}_l Xi+1
0%f _ [f(xi+1)=2f (x)+f (xi—1) o O o CZ o
0x? h?2
ﬁ: Yit1—2YitYi—1
dx? h?2
we know that 0 < i < n, x;=1+ih, nh =1, and letn = 4,
by substituting into the main equation, one-obtain
x; 3’i+1—2h3;i+J’i—1 +y,=0 n= 4= W
16 x; ¥i+1 + (1 —32x;)y; + 16 x;y;1 =0 (1)
Substituting (i= 1,2,3)-into the above equation, one obtain
39y, - 20 y5+.0 y3=20
24y, < ATy, + 24 y5= 0 o2
Y1 e-alY, + 24 y3= 0 * o
0 yl - 28 yz ~+ 55y3: 56 Xo — 1 X4 =2

Using gauss elimination method , one obtain
y, =1.3512, y,=1.63495  y;=1.85053

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal 19.02.2025
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Discretization methods (Finite Difference) using Taylor Series Expansion

« Taylor’s series expansion:
Consider a continuous function of x, namely, f(x), with all derivatives defined at« X+ Ax

Then, the value of f at a location can be estimated from a Taylor series expanded about point X,

that Is of 1 0%f 10°f 10"f
f(x+AX) = f (X —A AXY + AX)P 4.+ = AX) "4
(480 = 100 +—Ax-+ 23— (A + 5 = (Ax) 4~ = (AX)

In general, to obtain more accuracy, additional higher-order.terms must be included.
Higher order derivatives are unknown and can be dropped when the distance between grid

points is small. _
Taylor Series

S

Problem: For a smooth function £(x),
Given: Values of f(x;) and its'derivatives at Xx;
Find out: Value of f(x) interms of f(x;), f1(x), f"(x;), .... ﬁ\ /
If the function f.and “its n+1 derivatives™are : X >
continuous on_an interval containing x; and X, \\/
then the value-of the function f at x is given by

FOO= 100+ 00— x) + =2 (x %)+

£ ()
+...+ &(x xi)" +R,

n!
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Finite Difference Approximations of the First Derivative using the Taylor Series
(forward difference)

Assume we can expand a unction f(x) into a Taylor Series about the point x;,,

) = £+ £ 06 %)+ 08 (7 T2 L)

S 1:(n)(xi)(x,ﬂ—x.)”+R ‘ VA

(Xi+1 - Xi)3

n! ' n h f— f(X) Xi<_h>xi+l/ ‘
i X
f(x;) f(X:.,)
f (%) = T06)+ TN+ f"2<IXi> RRRAY O f(”;fxl)hn

f (Xi+1) — f (Xi) n
h 2!

Ignore all of these tenés

f'(xi):

f'(x)~ f (Xi+1)h_ F(x)| + 0(h)

Engineering Analysis Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal 19.02.2025



Finite Difference Approximations of the First Derivative using the Taylor Series

(backward difference)

Assume we can expand a function Yt f(x) '
f(x) into a Taylor Series about the o . /
point X;_; i1 . X X,

f(X )= T)+ F (), —X%)+ f"2(|Xi) (Xi—l_Xi)2 =+ 31 ( |—1_Xi)3
* f(n:]EXi)(Xi 1_Xi)n+Rn T
F(x )= F(x)= f'(x )+ Zhye _ P00 oy P00 g
2 3 N

f(x)— (%) + f(x) h

Fx)= h 2!

Vi = 1(x)— (%)
h ) Firstbackward | v
h difference (%) zT'Jro(h)

. . . 19.02.2025
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Finite Difference Approximations of the Second Derivative using the Taylor

Series (forward difference)
+ 1(x)

Y

fx )= f(x)+ F'(x)ho 2(")h2 f(zfx)hB AN f(n;fxi)hu--- 1)
FOn.2) = FO0)+ F0)2h+ - an? ¢ X gpe f(”;f Do,
£ = LEZ2 BTG _p ¢ @) (eq. 2)- 2% (eq.l)
F(x) = A:]zfi +o(h) =240, oy
i

. 19.02.2025
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Second Derivative Centered Difference Approximation (central difference)

f(xm):f(xi)+f'(xi)h+¥hz+$h3+--- (1)
< (3).
f(xi_l):f(xi)—f'(xi)h+mh2—mh3+m 2)
2! 3!
" 2 f(4)(X-) 4
F(X.)+ T(X) =21(x)+ T7(x)h” +2 =h'+ @

41

" i+1/ ' W
o) - ) 2O ODEI) (00,

) =21 (%) + T(X.,)
H2

f”(Xi) ~ f(Xi+l _|_O(h2)

Numerical Analyses Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal



Centered Difference Approximation

f(x,)= f(Xi)+f'(Xi)h+¥hz+%h3+m (1)
" 3)
f(x_)="T(x)- f'(Xi)h+mh2—mh3+m (2)
2! 3!
3)
F (%)~ T(%0)=21"(x)h+2 f 3in) h®+... (1)-(2)

(x 9 (x,
f'(x)= FX) th (1) %

- ~ f(xi+1) B f(xi—l) 2 .
P (x)~ T +0(ht)y 00

3 il

Xi X

f(x;) i
f(Xis2)

f(Xi:+1)
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Higher Order Finite Difference Approximations

)= FO0 700 1900 o, F000) o,
h 2! 3! n!

f"(xi) = f (Xi+2) —2 fr(])z(iﬂ) + f (X@

fl(xi):

{f(xnz)_Zf(Xm)"‘ f(x) +hf(3)(X-)+..1
fl(xi): f(Xi+1)h_ f(Xi) 4 h . h
90 O
3! n!
fl(xi): \ 1:(Xi+2)_l_él';:xiﬂ)_gf(Xi)_hBZ f”'(X)-l-...
- = T (%) 4T (%,,) =3 (%) 2
F'(x,) = o +0(h?)
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First Derivative

Method Formula Truncation

Error

Two-point forward difference oy S (i) = () 0(h)
) = n

Three-point forward difference | f7(y ) = =2 fOe)+4 f(Xiva)—f(Xit2) 0(h?)

2h
Two-point central difference £(x,) = flxip1) — f(xi-1) 0(h)
! 2h

Two-point backward difference Fllx) = fx)=fxiea) 0(h?)
h

three-point central difference i) = flxi—o) — 4 f(x;_1) + 3 f(x;) 0(h?)

Yo 2h
Four-point central difference | ¢/(y ) = fxi-2)—8 f(xi—1)+8 f(Xir1)—f (Xi42) 0(h*)
12h
23
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Second Derivative

Method Formula Truncation
Error
Three-point forward difference | flx;) =2 f(xi41) + f(x542) 0(h)
f (xi) = h2
Four-point forward difference F'(x)) = 2 f(xi) =5 f(xip1)+4f (Xi42) =f (Xi43) 0(h?)
/) = h?2
Three-point backward difference ., 3 f(xi—z) —4 2f(xi_1) + f(xl) 0(h)
Four -point backward difference F(x) = =3 f(xi—3)+4 f(xi—2)—=5 f(xi—1)+2 f(x;) 0(h?)
/.= h?2
Three-point central difference F(x;) = fei—1)=2 f(x)+ f(xigq) 0(h?)
1/ - h?2
Five-point central difference f'(x;) = ()(h4)
— f(xi—2)+16 f(xij_1)—30 f(xi41)—16f(Xi11)—f (Xi42)
12h?
24

Numerical Analyses
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Finite Difference Methods for Solving PDE's

A partial differential equation (PDE) is an equation that involves an unknown function (the dependent
variable) and some of its partial derivatives with respect to two or more independent variables. The

classification of PDEs is important for the numerical solution you choose. 3 Parabolic
1 Elliptic 2 Hyperbolic For example, the heat. or
For example, Laplace's For example the 1-D diffusion Equation. \ du _ 9%u
P wave equation — =D —
equation: 52, 52, 521 92w y at dx?
+ =0 CZ =
dx?  0y? 9x2  Ot2 Yn
Using finite difference method to solve the system
1. Discretize domain into grid of evenly spaced pzoints. , Ui j+1
2. For nodes where u is unknown for example :9” % n 0"\u — 0
2 2 a
discretize ’y 9y v |a Ui |Wij [Yi+s)
62 u — ui+1,j —2 ui,j + u’i—l,j + O(sz) ' y {
dx? (Ax)?
02 u _ Ujjy1 —2U55 + Ujjq 2
052 )2 +0(8y™)

When Ax = Ay = h, substitute into main eqaution

Ujt1,j —2Ujj & Ujeq)j + Yij+a —2Uj; + Ujjq
(Ax)* (Ay)?

3. Using Boundary Conditions, write, n*m equations for

u(Xi=1:m, Yj=1:n) Or n*m unknowns.

4. Solve this banded system with an efficient scheme. Using

Gauss-Seidel iteratively.

Numerical Analyses
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1 Elliptic equation

02u  0%u
+2 %
x> dy?

The Laplace molecule for Ax = Ay = h

The Laplace Equation

Uiprj U1 T U je1 + Ui —4u; =0
1
Upj = 7 (Wipr,jTUi—gj + Upjer + Ujjq)

This shows that the value of u; ;is the average of
Its values at the four neighboring diagonal mes

points. is called the diagonal five-point formula
which is represented in Figure.

The temperature distribution can be estimated by
discretizing the Laplace equation at 9 points and
solving the system of linear equations.

1
Up3 = Z(b1,3+u3,3 + Uy + Uyp)
1
U3 4 = Z(u2,4+u4,4 +b3s + us3)
1
Ug 3= 7 (Uz3tbss + gy + Uyp)

1
U3z = Z(u2,2+u4,2 +uz3 + usq)

Numerical Analyses

A
y b2,5 b 3,5 b 4,5 b 5,5
bis
b 1,4 m b 5,4
U4 34 |U 4.4
b bss
1;3 u 2,3 u 3,3 u 4,3 )
Ay
bi, bs ,
Uzz |U32 [Usgp
A
b - X
1,1 ﬁ
b 2,1 b 3,1 b 4,1 b 51
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Having found all the nine values of wu; ;once, their accuracy Is improved by either of the

following iterative methods. In each case, the method is repeated until the difference between
two consecutive iterates becomes negligible.

(i) Jacobi’s method. Denoting the nth iterative value of u; ;, by u™; ;, the iterative formula to
solve is
1
un+1i,j — Z(un

n n n
i1 T W im T U e F U )

It gives improved values of u; ; at the interior mesh points and.is called the point Jacobi’s
formula.

(if) Gauss-Seidal method. In this method, the.iteration formula is

n+1 _ 1 n n+1 n+1 n
utt = @l U U T )

It utilizes the latest iterative value available and scans the mesh points symmetrically from left
to right along successive rows.
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Example: A vertical steel plate of dimensions 2.7 cm X 2.7 cm and negligible thickness is in
steady state conditions. On the top edge, the temperature is 100°C and on the bottom the
temperature is fixed at 50°C. The temperature on the left and right edges are 50° C. Solve.to

obtain heat distribution.
02T  O0°%T

The governing equationis  —— + 57 = 0

T(x =2.7,y)=50°C;, T(x=0,y)=50°C,
T(x,y =2.7) = 100°C, T(x,y=0)= 50°C
Ax= Ay =09cm.

We know ;chat the diagonal five-point formula
Upj = 7 (Wipr,jTUi—gj T Ujjer + Ujjoq)
The vertical plate is discretizes below:

We need to find temperatures T 1 1, T 1., T ;1 and T , ,

., (four unknowns
Apply FDE at node (1,1),

50+50+T12 +T21—4T11=O

or
—4T11 + T12 + T2 1 = —100 (1)

Node or grid point (1,2),
50+T11 +T22 + 100_4‘T12 = 0

500C

or T11—4T12 +T22=—150 (2)

Numerical Analyses

4y 100°C
T 12 T 29 2.7 cm
50°C
Tll T21
X
‘ 500C
2.7 cm
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Node or grid point (2,1),
T11 +50_4T21+T22+50=0

or T —4T,1 +T,, = —100
Node or grid point (2,2),

Typ +Ty1 — 4Ty +1004+50=0
Ty + Ty, — 4Ty, = —150

From equations 1, 2, 3 and 4 we have
—4T, 1+ Ty, +T,1 = —100

Ty — 4Ty, + Ty 5 = —150

Ti1— 4T, + Tp5 = —100

Ty, +Tyq —4T,, =~150
—4 1 1 o] [T11

1 =4 0 1| |T12
1 0 -4 1] |Ty,

| 0 1 1 —4] |T,,]

solve this system of linear equations.

Numerical Analyses
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Example Consider steady two-dimensional heat transfer in a long solid body whose cross section
Is given in the figure. The temperatures at the selected nodes and the thermal conditions on the
boundaries are as shown. The thermal conductivity of the body is k 180 W/m - °C, and heat is
generated in the body uniformly at a rate of g = 107 10W/m.. Using the finite difference’method
with a mesh size of Ax =Ay = 10 cm, determine the temperatures at nodes 1, 2, 3,-and 4 and

Analysis: The nodal spacing Is given to be Ax =Ax =1=0.1 100 100 100 100°C
m, and the general finite difference form of an interior node _ T .

: ] . : g=10" W/m
equation for steady two-dimensional heat conduction for the

case of constant heat generation is expressed as 120 4 |\ |\ L 150

1
Upj = 7 (Uisr,jFUi—g; + Upjer + Ujjoq)

2 i
Inode 3
Tleft + Ttop + Thottom T Tright — 4 Thoge. T =0 150 #— :LJ ’ s 150

There is symmetry about a vertical line passing {Brough 01m
the middle of the region, and thus we.need to consider 01m

only half of the region. Then, | C— | |
M N 7 3
Tl = TZ and T3 = T4 2"‘:"::' 200 200 200

node 1 10041204 T, +Ts — 4T, + Z— =0 PT PT PT & _ 10T

[
node 3 150+200+T1+T4—4T3+g—=0

noting that T,=T, and T3=T, and substituting k

200 + T, — 3T, + 22X 1" The solution of the above system is

180

2 % 107 T,=T, =4115Cand T3=T,=439C
350 + T; — 3T + ~——"- =0 e 3T
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Explicit and Implicit methods
Explicit and implicit methods are approaches used in numerical analysis for obtaining
numerical approximations to the solutions of time-dependent differential equations.

Explicit Method = a formulation of equation into a FD equation that expresses one unknown in
terms of the known values or express all future (t + At) values, T(x, t + At), in.terms of current (t)

and previous (t - At) information, which is known.

Implicit methods calculate a solution by solving an equation4nvolving both the current state of
the system and the later one or Implicit Schemes express all future (t + At) values, T(x, t + At),
in terms of other future (t + At), current (t), and sometimes previous (t - At) information.

Finite Difference Solution of Partial Differential Equations: Parabolic Equation

ou d%u
* Solve the p.d.e. — =D — unknown values
The finite difference approximation to the PDE is then Known values j
Evaluate the p.d.e.at (i,j), (i = spatial index and j = temporal index
J-1 ‘
Depending on how M s approximated, we have three basic schemes: _ _ _
at i-1 i i+1
1. Explicit method 2. Implicit method 3. Crank-Nicolson method .
31
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The explicit method

1. The explicit method - one unknown or nodal value is directly expressed in terms of known
pivotal values. « The process advancing from a known time level(s) to the unknown_time level

Is called “time marching”.

In this approaches using a forward difference at time t and a second. order central

difference for the space derivatives. ou 0%u
| o P - P oxz
Use a central difference approximation to evaluate Sz ati, ) 1
0% u|  _ Ui+1j—2Ujj + Uj—qj t
0 2. . A 2 o
LY (8x) unknown values CENES|
* Let’s use a forward difference approximation
du .. . .
to evaluate —- ati,j known values Uity u; ;i | Yityj L=
a_u — u(xi,j'l‘l) — u(xl,]) u=20 At | Ujj-1
dat|. . At
v A x
Substituting inte-the main equation, one obtain < > %,
X
ui,j+1—ui,j -D Ujt1,j -2 Ujj + Uj—1qj u=f(x) m
At (Ax)?
=1 . i ' efine the parameterras r =
Ujj+1=U;; + AL D (2x)? ¥ ()2

Numerical Analyses
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(Wi je1— Uij) =7 WUipr,j — 2 U5+ Ujoq,j)

Wi jpr =T UpprjH1 — 27wy j + 7wy g
We can write out the matrix system of equations we will solve numerically for the temperature u.
Finite difference method PDE example (heat equation)

Ujjp1 =T Uppr,;H[1 — 27r]ug ; + Tu—1;  can be written as 1= A,

— — — —

1—2r r an
r 1—2r r Uy

r 1-—2r Uy
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contact with blocks of melting ice and that the initial temperature distribution in non-
dimensional form (unitless) is

Ju = 0atx = 0andx = 1,t > 0 (the boundary condition) (g<x<1
iu = 2x, for0 < x < - = 0(theinitial condition)
u = 2(1—x),for§ <x <1
Solve the heat conduction equation Y= 2% Using the Explicit Method
ot  0x?
Ax = h =01 At = 0.001 At _ 1 I
O 1 Uij+1
solution u=0 '
Uoo=0,U0=0.2,U30=0.6, U20=0.4 Us0=0.8, Us0=1, Wit w;; |%ivj
Uso=0.8,U70=0.6 us0=0.4, Us0=0.2, Uw00=0 1 I =
) At
Wi jpr =T U ;[ — 27wy + 7wy g "= T -
1 1 Ax
Ujj+1 = g Uit 08U + - Uiq ) — L ",
= m
whenj = 0 1 “ 1f(x)
1 1 = = + 0. +— =0.
ul’l = 1_0 u2,0+ 0.8 u1,0 +1_O uO’O = 02 u4’1 10 uS’O 0.8 u4’ 0 10 u3’0 O 8
1 1
1 1 = — - —
U1 = pUzot 08Uz +— U = 0.4 Usi = ToUsot 0.8Us o +75 Uso =1
1

= —u,q.+ 0.8 + L =0.6 Ug1 = —~U70T 0-8u60"'i us = 0.8
Uz = 7, %40 O Uz, 0 T5 Uz0 =Y ' 10 7 910 T
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i=0 [ =l | i=2 | i=3 | i=4 | =5 | i=6

x=0 | 01 | 02 | 03 [ 04 | 05 | 06
(i=0)t=0,000 | 0 [ 0.2000 | 0.4000 | 0.6000 | 0,8000 | 1.000 | 0.8000
(i=1)=0.001 [ 0 [0.2000 | 0.4000 | 0.6000 | 0.8000 | 0.9600 | 0.8000
(i=2)=0.002 | 0 [ 0.2000 | 0.4000 | 0.6000 | 0.7960 | 0.9280 | 0.7960
(i=3)=0.003 | 0 [ 0.2000 | 0.4000 | 0.5996 | 0.7896 | 0.9016 | 0.7896
(i=4)=0.004 | 0 [0.2000 | 0.4000 | 0.5986 | 0.7818 | 0.8792 | 0.7818
(i=5)=0.005 | 0 [0.2000 | 0.3999 | 0.5971 | 0.7732 | 0.8597 | 0.7732
(i=10)=0.01 | 0 |0.1996 | 0.3968 | 0,5822 | 0.7281 | 0.7867 | 0,7281
(i=20)=0.02 | 0 |0.1938 | 0.3781 [ 0.5373 | 0.6486 | 0.6891 | 0.6486

Numerical Analyses
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Example: Consider a steel rod that is subjected to a temperature of 100 C on the left end and 25
C on the right end. If the rod is of length 0.05 m, use the explicit method to find the temperature
distribution intherod from t =0 and t=9 seconds. Use Ax = 0.01 and At =3s.

Given: k =54—2—p=7800~L c =490
m< K m kg.K
The initial temperature of the rod is 20 C.
Solution =0 1 2 3 N 5
T =100°C F R o o o 4 T=25¢
0.01m
Recall Number of time steps,
_k 3 Cinat = Uinitia
“T At
therefore, :% _13
54
a = 2800 490 Boundary Conditions
5?2 T =100C| o j=0123
=1.4129%x10>-m* /s T5j _ oo &
Then, At :
A" All internal nodes are at
(Ax) for t =0sec This can be
5 3 represented as
=1.4129x10 — :
o7 = 04239 represe N
T." =20°C, foralli=1,2,3,4
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Nodal temperatures whent =0sec, j=0:
T2 =100°C
T, = 20°C)
T2 =20°C
T2 =20°C
T. =20°C|
T, =25°C

We can now calculate the temperature at each node explicitly using the equation formulated

earlier, TJ* =TJ 4+ A(TJ, —2T) +T)J,)

1+1
Nodal temperatures whent =3sec

i=0 T, =100°C—Boundary Condition

> Interior nodes

setting J =0
. 1_ 70 0 _ o0 0 .
i=1 T =Tl +alr-2r’+TY) i =2 T7=To 4 AT =212 +T2)
= 20+ 0.423920 - 2(20) +100) 2040423920 - 2(20) + 20)
i;gig;gfg@o) — 20+0.42390)
- ' =20+0
~53.912°C
= 20°C

Nodal temperatures whent=3sec , j=1:
T." =100°C+Boundary Condition

T} =53912°C
T} =20°C
T!=20°C

T =22120°C

> Interior nodes
T, = 25°C —Boundary Condition
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Nodal temperatures when t =6sec
T, =100°C — Boundary Condition

(= setting ] =1,
1=1 T12=Tr+aT}-21}+T}) =27, =T, + AT -ar) + 1)

- =53.912+0.423920 - 2(53.912) +100) =20+0.423920 - 2(20) +53.912)
=53.912+0.423912.176) =20+0.423933.912)
=53.912+5.1614 =20+14.375
=59.073°C =34.375°C

Nodal temperatures whent=6sec, j=2:
T/ =100°C —Boundary Condition

T,2 =59.073°C|
T2 =34.375°C

T2 =20.889°C ,
— o __ iti
T2 = 22.442°C T, =25°C—Boundary Condition

s Interior nodes

Nodal temperatures when t =9sec
1=0 T2 =100°C—Boundary Condition

setting | =2, T

=1 7°-T2+ar2-212+T7) T =T+ A(T7 212 +72)
59,073+0.423934.375- 2(59.073) +100)  =34.375+0.423920.899-2(34.375) +59.073)
50,073+ 0.423916.229) =34.375+0.423911.222)
=59.073+6.8795 =34.375+4.7570
= 65.953°C =39.132°C
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Nodal temperatures when t=9sec, =3
T.) =100°C —Boundary Condition

T =65.953°C
T23 =39.132°C
T2 =27.266°C
T} =22872°C
T.) = 25°C —Boundary Condition
To better visualize the temperature variation at different locations at different times, the
temperature distribution along the length of the rod at different times is plotted below.

> Interior nodes

120 + L .
Temperature distribution along the length of the rod
100 | M
< 80 -
~
g
£ 607 —li—1t=3 secs
D
g a0 - =—§—1t=0 secs
= t=9 secs
-w r"‘
20 - p——
O I I I | | |
0 001 0.02 003 004 005
Location on rod, x(im)

39
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